Students for a Smarter Planet ..leaders with conscience

From (which has some awesome blogging going on by Tracy Staedter, and others) is this mention of using alternative fuel help future plane travelers take to the skies in a more eco-friendly way…

Staedter says “Oscar Viñals is at it again. From the designer who brought us Sky Whale, comes the AWWA·QG Progress Eagle concept plane, which has six hydrogen fuel cell engines, rear wind generators for electrical power and quantum solar cells to harvest sunlight. The sweeping curves reduce drag and produce 75 percent less noise than current planes. Viñals thinks the plane could be airborne by 2030. We can only hope.”

Get the details on Progress Eagle here (including really cool renderings): Envisioning the Eco-Jet


Progress Eagle

The 2014 Sky Whale by Viñals is a story that you should catch up on as well:  The future of sustainable air travel: A chat with designer Oscar Viñals

and take a look at the drawings laid out by Yanko: Sky Whale

Check out other Yanko concepts by visiting their website – there’s so much to look at!!!  Yanko logo


With so much of our time being spent to make ‘friends’ around the globe through virtual meetings, wouldn’t it be cool to hop aboard one of these jets and say hello to that individual “IN PERSON”?  Are you dreaming up your own method of transportation? What forms of renewable energy can you use to power your vehicle(s)?  Maybe your next tweet should be to an aeronautical engineer to enlist their help…you could be flying high!


Bookmark and Share
March, 31st 2015

Posted by

During the past few weeks, we have continued to tinker and build “motley”, our waterproof drone in preparation for taking aerial photography of ocean environments. We added a product called “Plasti-Dip” to the rim of the dome to create a more stable seal with the frame (see figure below). The dome will still require a more secure seal for flight, but the “Plasti-Dip” coating adds some stability.

For the first time since last fall, we tested motley in our Indoor Track and Tennis (ITT) facility.
Flight characteristics were smooth and without incident. We tried using a tether for indoor flying, and motley was able to handle jerks and tugs in the air.


Motley is almost ready for Belize. Before we travel, we are hoping to look at the battery configuration inside of the drone. We are hoping to fit two batteries inside for a longer flight time. We are also looking at attaching foam to the bottom of it to make it float better in case of a crash in water.

Much of February was spent preparing for a public event titled “Commercial Drones in our Backyards and Communities”, held at Smith College on March 4th, 2015. We prepared drones for indoor flights on a tether as part of the demonstration. We also designed a “roll cage” for one drone to protect the propellers and add an extra level of safety, but ended up not using it since it caused large vibrations in the system. We worked on the tether system to ensure a secure, yet flyable system.

Although not directly tied to our research, our plans for work in Belize were highlighted.
Finally, we heard from our liaison in Belize that early June is a good time to observe turtle nesting, which we intend to add to our itinerary. Our imagery of turtle nesting sites will add to a baseline survey of nesting locations.

Bookmark and Share
March, 31st 2015

The World Health Organization (WHO) is launching a new policy on injection safety and a global campaign with support from the IKEA Foundation and Gavi, the Vaccine Alliance, to help all countries tackle the pervasive issue of unsafe injections.

Federal Minister for Development Gerd Muller, Gavi CEO Seth Berkley and Gavi Deputy CEO Anaradha Gupta pictured at the moment pledges to Gavi reached US$ 7.5 billion (Credit: GAVI/2015)

Federal Minister for Development Gerd Muller, Gavi CEO Seth Berkley and Gavi Deputy CEO Anaradha Gupta pictured at the moment pledges to Gavi reached US$ 7.5 billion (Credit: GAVI/2015)

WHO calls for worldwide


use of ‘smart’ syringes


The spread of infectious diseases from our traditional syringe system has risen alarmingly.  It’s time for measures that will halt disease proliferation.  Do you have some ideas for ‘smarter’ healthcare products?  Your idea may save lives!

Bookmark and Share

Massive Open Online Courses (MOOCs) (such as EdX and Coursera) have initiated a revolution in higher education by providing opportunities for interested students to learn from the comfort of their individual locations at their desired pace. However, an important and highly successful aspect of traditional classroom education, which is modulating content delivery based on understanding real-time student feedback, is conspicuously missing in such e-learning environments.While existing e-learning environments provide a basic technology framework, the personalization of such environments with human-in-the-loop feedback is still missing. This project, e-DRIShTI, aims to bridge this gap by developing a system for automatic recognition of students’ engagement levels during e-learning sessions, using advanced computer vision and machine learning methods.

Considering the ubiquitous presence of cameras in consumer devices such as tablets and laptops, it is possible now to develop a system that can detect and recognize student engagement levels from the face images captured by the camera during the e-learning sessions. Such a system has several applications towards smarter, personalized e-learning environments: (i) it can allow for content to be modified based on a student’s engagement level; (ii) it can be used as feedback for curriculum development; (iii) it can potentially be used as a diagnostic for early detection of learning disabilities; and (iv) it can be stored and archived as part of students’ learning portfolios which can later be mined or analyzed for providing feedback to the students. In general, this project can lead to a more concerted, larger effort on automatically obtaining real-time student feedback – including other states such as confusion, boredom, excitement and interest – towards an effective personalized e-learning experience.

Technorati Tags: , , ,

Bookmark and Share

One may look to their orange tree to find the source of a new technology that employs orange tree trimmings to produce acoustic insulation.  The new material is more environmentally friendly to produce and an improvement in terms of acoustic insulation compared to conventional laminated gypsum boards.

blog orange tree

The Universitat Politècnica de València has teamed up with researchers at the Universitat de Girona and created acoustic insulation from orange tree trimmings by a defibration (or “digestion”) process which is then combined with polypropylene, a common plastic found in a wide variety of products, including toys and automobile parts.

The new insulation boards meet the objectives of the European research programme Horizon 2020, which focuses on replacing materials that can damage the environment with natural or recycled raw materials.

The team is working on improving the compositions to further increase their insulation properties, and is also working with ground olive stones in a similar way to the orange trimmings, having achieved very promising preliminary results.

I wonder what other unconventional materials can be used to produce insulation – there must be thousands once the technology to transform them is identified.  This really gets one thinking….. hmmmm…




Bookmark and Share

Subscribe to this blog Subscribe to this blog

ChatClick here to chat!+